All About BTC, LTC, ETH, ZEC mining as well as other alternative crypto currencies
As we have already shared with you recently there were news of a X11 ASIC miner, namely the iBeLink DM384M ASIC DASH Miner some days ago and we were among the first to pre-order a unit in order to confirm it is indeed real and to test it out. This week we have received our iBeLink DM384M miner and we can confirm it is real and it is also time to share some photos of our unit and first impressions form the hardware. We want to start with the fact that we are in no way associated with Dual Miner who were selling the device or the Tiannengbo Group who are making the hardware, we have purchased the device as a regular customer and have paid the normal price. The total price of the iBeLink DM384M X11 ASIC miner was the $2098 USD stated on Dual Miner’s website + extra $157 USD for the shipping and then 20% VAT when it arrived from China + some extra fee for the courier company to get it cleared from the customs. The total cost of the device delivered to our door was $2726 USD with everything included that we have paid to get it. We are very happy with the service provided by Dual Miner, though they may be a bit slow in email communication at times, they do their job well and deliver on their promises… it is a shame that they do not have a larger product catalog offering more mining hardware options. Moving to the device itself, it was very well packaged and the box was not as big as we have anticipated actually. What we got is the miner itself plus a power cable with a US power connector, even though the unit was shipped to Europe and there was no manual inside (download the manual online in PDF format).
iBeLink DM384M X11 ASIC miner we got is very much like on the first published photos, so the initial images were not from some prototype, but from the actual device that was shipped to customers. The build quality is quite good, the case is sturdy and everything is well fitted and bolted inside, so even after getting it shipped from China everything was fine and there were no fallen screws or disconnected cables during the transportation. It all feels like a solid product designed to last long and hopefully it will be able to even though this seems to be the first generation of X11 ASIC miners and we are probably going to soon see more efficient and even faster solutions becoming available. There are already some news for competition with higher hashrate and lower power consumption, however we can not confirm if there is actually other working X11 ASIC hardware or not yet. We can only confirm that the iBeLink DM384M X11 ASIC miner is real and works as we have actual hardware in our hands and are already using it for mining. We are going to share more details about it very soon, so stay tuned for additional feedback about the device as we continue to test it, details about power consumption, heat, overclocking, optimizations and so on are coming soon.
iBeLink DM384M consists of four blades with 192 TNB0301 ASIC chips total and the device is supposed to be able to provide about 384 MHS hashrate at about 715 Watts power consumption at the wall. The four blades with chips are being controlled by a Raspberry Pi that also provides the user with an easy graphical interface to the cgminer software (the unit is being shipped with version 3.5.5) that is used for the mining process. The four blades are connected via USB ports to the RPi and the network interface of the RPi is used to be connected to your network in order to setup and control the miner. No need to have it connected to a standalone computer to control the mining process, everything is being done by the device thanks to the Raspberry Pi inside, all you have to do is connect the power and network cables and you are ready to configure it and start mining.
The power supply built into the unit is an 850 Watts one, so with a power consumption of around 700 W it should be able to handle some more overclock if the miner is capable of such, we are going to be trying this out soon as well. The cooling of the ASIC chips is ensured by four Delta fans (server grade), so it is not very silent when in operation, even though the air exiting the case of the miner does not feel very hot. There seems to be no temperature sensor and fan control available, to reduce the noise if the operating temperatures are lower, so definitely the miner is not suitable to be used in a room where people are present more of the time as it is pretty noisy.
Here is how a single blade looks like with the 48 TNB0301 ASIC chips on it. The cooling heatsink is not placed on top of the mining chips, but is instead on the back side and it uses the PCB to transfer the heat of the chips to the heatsink. This is the easier way to do the cooling when the chips are not getting way too hot as we’ve seen from other ASIC miners in the past.
The last part of our initial impressions that did not leave us very happy is the fact that there was quite a bit of dust buildup inside the miner, way more than there should be from a normal testing of new hardware before shipping to customer for example. The outside of the miner makes an impressions that it is new (cleaned well), but on the inside – the fans and the heatsinks of the blades with chips have dust that is hard to cleanup with just compressed air without taking the device apart. The amount of dust we should normally be associated with at least of few weeks of usage in normal everyday environment (non server room) and we don’t think that these devices are tested in a very dusty room. So it seems that they have been “tested” for some more time before being shipped to customers…
When calculating what crypto coin to mine you need to take into account not only the hashrate you get, but also the power usage for the specific algorithm used by the coin. When talking about Nvidia GPUs the two most popular ones used by miners are GTX 750 Ti and GTX 970 and there is a reason behind that – they offer good price/performance ratio to be used in multi-GPU mining rigs. Sure you can always go for a GTX 980 Ti or even GTX Titan X, but these although more powerful are also significantly more expensive and do not provide so good price/performance ratio.
We have decided to do a quick check of the current situation with a Geforce GTX 970 video card from Gigabyte (WF3OC) and a GeForce GTX 980 Ti reference design GPU and see how they compare in a power and performance check. The results you see in the table above are achieved with the latest ccMiner 1.7.4 from Tpruvot and with the latest fork of ethminer wth CUDA support from Genoil. The video cards are not overclocked further than their factory settings (the Gigabyte GTX 970 is factory overclocked) and they are forced to run CUDA applications in P0 power state to maximize performance in Ethereum.
As you can see from the results aside from Ethereum the GTX 980 Ti is faster with not that much more power usage, however the price of the 980 Ti is roughly double the price of a single GTX 970 and with two 970s you are sure to beat the hashrate of a single 980 Ti. It is interesting to see that a GTX 980 Ti (reference board) can be slower than a GTX 970 GPU, but with a non-reference design you can actually get about 20-21 MHS in Ethereum due to the higher clocks. Still the GTX 980 Ti is most definetly not the right video card for mining Ethereum, if you want to stick to mining Ethereum’s Ether coins with Nvidia you should go for the GTX 970 for sure as the best choice. Even though for Ethereum and other Dagger-Hashimoto altcoins AMD GPUs are still faster in terms of hashrate.