Posts Tagged ‘iBeLink DM384M operating temperatures

ibelink-dm384m-2

ibelink-dm384m-thermal-1

Time for a bit more in-depth look at the operating temperatures of the iBeLink DM384M X11 ASIC with the help of a thermal imaging camera. We are starting with the front and rear of the case that the mining ASIC uses, the front has four powerful Delta Electronics server fans that such cold air through the whole case where the mining blades are and the hot air exits directly through the back of the case. There are no other fans at the back, just open space for the hot air to exit the case of the device effectively cooling. The only other fan is the one of the server grade power supply that is mounted inside the case, another server grade Delta Electronics fan that is also powerful and noisy when in operation. The fans do not have power control, so they operate at maximum RPM all of the time making the device quite noisy, but also effectively cooled even in no so cool environment.

ibelink-dm384m-3

ibelink-dm384m-thermal-2

The four blades with ASIC chips are located on the side of the cooling fans and on the other side of the case is the power supply with the Raspberry Pi controller mounted over it. The side with the RPi and the power supply is pretty cold compared to the side where the four blade with 48 chips each are located. As one might expect the hottest part inside the miner are the ASIC chips, the rest remains pretty cold thanks to the high airflow provided by the cooling fans. Even the heatsink that are on the back of the PCB with the chips remain pretty cool thanks to the high airflow passing through them.

ibelink-dm384m-5

ibelink-dm384m-thermal-3

And now let us take a look at the chips themselves as the hottest element of the iBeLink DM384M X11 ASIC miners. Under the stock operating conditions they do remain with a surface temperature range of about 60-68 degrees Celsius as the temperature varies slightly depending on their position on the blade. As we’ve said already the cooling heatsink is not placed on top of the chips themselves, but instead is on the back of the PCB. This is the easier way to make things work, but not the most efficient for cooling as the chips use the PCB as a large heatspreader that then passes the heat to the large heatsink. This results in higher operating temperatures of the ASIC chips as there is no direct contact, but the temperatures are still Ok for normal operation. You should however be careful should you decide to overclock in order to get some extra hashrate as this will increase the operating temperatures of the chips. It seems that iBeLink has already chosen the optimal operating frequency for the device that results in very little HW errors while providing optimum performance. Further increasing the PLL frequency over the stock 110 MHz even with just a few Megahertz may result in increased percentage of HW errors.


top