filmes porno buceta gostosa phim sex www xxnxx com xxxvideos porno Xvideos Com

Search Results

sapphire-nitro-plus-rx-480-8gb

We’ve managed to get our hands on an AMD Radeon RX 470 video card and not just any, but the best out there – the 8GB Sapphire NITRO+ AMD Radeon RX 470, so we’ve had to put it to a test to see how good it will perform for mining Ethereum (ETH) and other popular crypto currencies using different mining algorithms. The Sapphire NITRO+ 8GB model of RX 470 is probably the best you can get in terms of mining performance among other RX 470 offerings because it comes with memory clocked at 2000 MHz (8 GHz) or with other words the same memory frequency as the reference design RX 480 GPUs.

This faster video memory makes it interesting especially for mining Ethereum, but there are other good points to that video card as well such as the 8-pin PCI-E power connector, the good cooling solution and the 1260 MHz boost clock of the GPU. The only drawback is that the price of the Sapphire NITRO+ AMD Radeon RX 470 8 GB should pretty much be the same as the price of 8 GB reference design RX 480s. The 4 GB models of RX 470 are apparently equipped with slower memory, so as far as Ethereum mining goes they will perform slower than the 8 GB NITRO+ version, though i other algorithms they may not be much slower.

rx-470-eth-default

The hashrate that the Sapphire NITRO+ AMD Radeon RX 470 8GB manages to provide out of the box for mining Ethereum is about 24.5 MHS or almost much what the reference design Radeon RX 480 manages to deliver mining ETH. Again this is because of the 8 GHz video memory used on that model from Sapphire, other RX 470 cards with 4 GB come with 7 GHz or 6.6 GHz video memory and that will for sure result in a slower hashrate for Ethereum. The Sapphire NITRO+ manages to keep just fine the GPU boosted to the maximum 1260 MHz is supports all the time, though for Ethereum mining you can lower that frequency by reducing the power limit below 100% on the Power Target as ETH does not benefit much from the higher GPU frequency and you can reduce the power usage without a hit in performance.

What we did not like much is the default fans profile that try to keep the rotations per minute at a low value maintaining a silent operation of the GPU, but with it working at higher temperature. While mining Ethereum the RX 470 wanted to keep the fans in the 30-ies as percentage or about 1300 RPM and as a result the temperature spikes above 70 degrees Celsius, so manually increasing the cooling temperature curve or setting a fixed higher percentage is a good idea to keep the GPU cooler while mining, especially if you mine coins that use more GPU intensive algorithms unlike the one used by Ethereum that is more memory dependent. Also the default power usage of the Sapphire NITRO+ can definitely use some tweaking as it seems to be slightly higher than that of a reference design RX 480

rx-470-oc-eth-8400

Overclocking the Sapphire NITRO+ AMD Radeon RX 470 8GB has left us a bit disappointed. We kind of expected to be able to push the 8 GHz video memory to at least 8.8 or 9 GHz like you can on most reference design RX 480. Unfortunately we ended up with up to 8.2 GHz (2050 MHz) maximum limit from AMD’s WattMan and maximum 8.4 GHz with the use of the ASUS GPU Tweak II tool. We are still somewhat short on options for overclocking tools for the new AMD RX series of GPUs, so this forced overclocking limit has left us disappointed. We are not sure if it was forced because the GDDR5 memory chips from Samsung are not capable of working at higher frequencies without problem or as a safety measure so that the RX 470 turns out slower than RX 480 even when overclocked.

The result of the limited video memory clock is important only for Ethereum mining as the result is slower maximum hashrate. At the maximum of 8.4 GHz (2100 MHz) for the video memory we were able to get just about 25.8 MHS mining Ethereum or with other words just about 1.3 MHS more than the stock clocks hashrate. We are yet to see how the 4 GB models of the RX 470 will perform with Ethereum due to their lower default video memory clocks as well as how much it will be possible to overclock them.

rx-470-hnm-hashrates

When the AMD Radeon RX 480 was released there was an issue with the drivers that prevented users from successfully mining many of the crypto currencies that used sgminer as the miner just crashed with an error. Since the RX 480 was actually a new architecture there was no way to just get back to older video drivers and have no trouble running sgminer, however it seems that the situation has improved significantly since then, though it is still not perfect for some algorithms and miners. Since at that time most people were using RX 480 for Ethereum mining where no problems with the miners were present that was not much of an issue, but due to various reasons a lot of people have since moved to other alternative coins. Above you can see the hashrates for many of the more popular algorithms supported by Nicehash and tested with their dedicated mining solution that bundles multiple miner programs in a single package.

You can see some benchmarks of the AMD Radeon RX 480 using the NiceHash miner here and note that quite a few of the algorithms back then reported 0 MHS hashrate. At the moment it seems that only Neoscrypt, WhirlpoolX and Blake256r14 are still problematic and are reporting 0 MHS hashrate. That is of course only for the listed algorithms supported by NiceHash and there are quite a few others as well. It is important to note that the Sapphire Nitro+ RX 470 8GB is getting pretty close in terms of performance to a stock RX 480 with 8 GB and in some cases the results are even slightly better (due to further optimizations) and in the others the performance is not behind by much. Still the presence of a little more Stream Processors in the RX 480 gives it an advantage in the more GPU intensive algorithms compared to the RX 470. Unfortunately the GPU frequency of the RX 470 cannot be pushed much higher like on the RX 480, so hoping to compensate the difference with higher OC will just not do.

Just to add information about some more algorithms, the LBRY sgminer crashes the video driver, so we could not get a result in terms of hashrate. As for the SiaCoin sgminer, it has managed to provide us with 906 MHS hashrate mining on the Siamining pool using Stratum, so there were no problems with that miner. Hopefully the issues with some miners and some algorithms not working with the new AMD RX series of GPUs will be resolved as AMD is probably already preparing the faster RX 490 for a release alter this year and it is highly likely it being an interesting solution for crypto miners as well.

amd-radeon-rx-480-nicehash

We have already covered the performance of the new AMD Radeon RX 480 GPUs for mining Ethereum, so it is time to see how the GPU performs with other popular algorithms. We have already mentioned that the RX 480 apparently has some issues running sgminer (at least under Windows), so we were not able to run tests with many of the currently popular algorithms, but it seems that many people missed that part. The good news is that there is now an updated version of the NiceHash Miner that apparently adds support for GTX 1070/1080 and RX 480. So we have downloaded it and ran the built in benchmark and you can see the results above as well as the fact that some algorithms still have issues apparently hence the 0 MHS results, but it is much better than before. We have noticed that the sgminer that is being packaged and used for RX 480 now has some pre-built binaries for Ellesmere (RX 480) included. So even if you are not planning on using the NiceHash Miner on Windows, you still might get the sgminer-5-4-0-general from the bin folder and use it on Radeon RX 480.

amd-radeon-rx-480-vs-gtx-1070-970

Here is a chart comparing the performance of a reference design AMD Radeon RX 480 from ASUS in the other algorithms apart from Ethereum to an Nvidia GeForce GTX 970, namely a Gigabyte WindForce OC model and a reference design Nvidia GeForce GTX 1070 from ASUS. The benchmark did not produce results for NeoScrypt, WhirlpoolX and Blake256r14 as you can see, so it seems that some algorithms may still have issues running on RX 480. Also do note that the RX 480 has been around for just a few days, so there have not been any specific optimizations for the new Polaris architecture that it uses and further performance increases might be possible. The X11 Evo algorithm is not yet supported by the sgminer for of NiceHash, so there are no results as the dedicated miner is having trouble runnign on the RX 480 on Windows (we have not yet tried Linux).

The pleasant surprises are in Blakecoin and the X-based algorithms where the result of the RX 480 beats with a bit what the GTX 970 manages to provide in terms of hashrate. Unfortunately in the others the GTX 970 turns out faster than the RX 480 for the moment and the AMD card can definitely use some improvements in algorithms such as Lyra2REv2 and Quark for example. The GTX 1070 however manages to provide a significantly higher hashrate compared to the RX 480 and with a lower power usage than the AMD card. Again the RX 480 could get some tweaks and fixes and it definitely needs some and will most likely manage to catch up to the GTX 970, but reaching the GTX 1070 is probably too much to expect.

We should not forget that the GTX 1070 is a significantly more expensive GPU than what the AMD Radeon RX 480 sells for, but still we did not expect doubled or almost doubled hashrate provided by the GTX 1070 in most algorithms. It seems that the benchmark results we get for crypto mining and the ones when using the RX 480 for gaming are pretty much the same (apart from memory intensive mining algos such as Ethereum) where the new AMD card manages to be on par or a bit faster than a GTX 970 in some of the cases.

nvidia-gtx-1070-overclock-settings

Time for some overclocking of the GeForce GTX 1070 Founders Edition and running the tests again to see what hashrate increase can we expect from the GPU with the increased operating frequencies. The Founders Edition cards are somewhat limited in the max power you can get, but the good news is that the GTX 1070 FE still has the same 8-pin PCI-E power like the 1080, even though its default TDP limit has been lowered to 151W and the Power Limiter allows for just 12% increase over the default TDP (169W max TDP). There is already a tool for flashing modified video BIOS files available, so now the only thing we need figured out is how to modify the TDP limits in BIOS and other settings such as frequencies and voltages in order to be able to squeeze some additional extra performance over the stock clock capabilities of the Founders Edition cards and even more from the non-reference designs that are already starting to become available on the market.

We already know that the GTX 1080 and GTX 1070 GPUs are handling quite well overclocking and you can squeeze quite a bit extra performance from them if you are not limited and don’t care than much about the power usage. We are trying the GTX 1070 Founders Edition to see what it can do withing its current limits without touching the core voltage and what we got was: Power Limit + 12%, Core Clock + 210 MHs, Memory Clock + 830 MHs, the max settings that are running stable for 24/7 mining on our test card and the results are below. Do note that these can vary from card to card, so you should experiment until you find what works best for you. Regardless it seems that the GTX 1070 FE cards are doing quite well in terms of overclocking in general, so you should expect an nice extra performance boost from them and even more from the non-reference designs.

nvidia-gtx-1070-overclocked-hashrate

The performance increase we get after overclocking the Nvidia GeForce GTX 1070 Founders Edition card with the clock settings above are pretty much consistent with what the GTX 1080 FE shows. The performance boost in terms of hashrate increase in the various algorithms is about 12-14% higher than at the stock settings and better results could be achieved with increase of the voltages, however with that you will also need to be careful that you are fitting in the TDP limit. It is interesting to note that the GTX 1070 FE does perform better on NeoScrypt (668 KHS stock/771 KHS overclocked) than the 1080 FE, but it it still outperformed by the GTX 980 Ti for example. It seems that the slower GDDR5 video memory used here does perform better with the memory intensive algorithms unlike the faster GDDR5X memory used in the 1080, however the GTX 1070 still needs some fixes for NeoScrypt. As already noted the situation with Pascal GPUs including the GTX 1080 and the GTX 1070 is the same for Ethereum mining under Windows resulting in very low hashrates, so while waiting for a driver fix you might want to go for Linux for Ethereum mining on these cards. All other algorithms we have tested besides the not so great NeoScrypt performance are doing well under Windows 7 and 10, so mining for these you don’t need to rely on Linux, especially if you are no good with it.


top