It Is All About BTC, LTC, ETH, DOGE, KAS mining as well as other alternative crypto currencies
Today we have built a 6-card mining rig using Gigabyte GeForce GTX 750 Ti (N75TOC-2GI) video cards that are based on the latest Nvidia Maxwell architecture promising very good performance for mining with low power usage. Our own initial tests of the GeForce GTX 750 Ti as a single card for mining have shown very promising results as well, so we’ve decided to see what we can expect from a mining rig and put together 6 cards with PCI-E x1-x1 extenders on an AsRock H81 Pro BTC motherboard with Intel Celeron G1820 CPU and 4GB of RAM running Windows 7.
The result we’ve got from the 6-card mining rig for mining Scrypt with CUDAminer was a total of 1480 KHS as hashrate. Then after overclocking the video cards to the maximum stable result we managed to get (+135 MHz for the GPU and +610 MHz for the video memory) we’ve managed to increase the total hashrate to about 1615 KHS. We went as far as to increase the power target limit from the default 38.5W by modifying the video BIOS of the cards. With the modified video BIOS we have managed to get slightly more than 1700 KHS with a lot of extra power used by the whole system that made it not worth it the so little extra increase in the hashrate. Just to be sure that the x1-x1 PCI-E risers (not powered) might be the cause of slight performance drop we’ve replaced them with x1-x16 USB 3.0 powered extenders, though that did not change the performance we got from the cards.
The Gigabyte GeForce GTX 750 Ti video cards we used for the mining rig do have an external PCI-E power connector, however it seems that unlike AMD graphics with OpenCL, when using Nvidia-based GPUs with CUDA for mining the use of a x1 PCI-E lane to access the video card does introduce slight performance drop and if you multiply the 10-15 KHS less per card for a 6-card mining rig it is not so little. So it is important to know that if you are going to build a GTX 750 Ti-based mining rig you will be getting slightly lower hashrate if you are using PCI-E extenders as compared to what you will get with cards inserted in x16 PCI-E slot directly. Also there is some variation between cards in terms of the maximum overclock supported that results in different maximum frequencies that you can achieve, for example if one card is able to do +135/+700 MHz for the GPU/VRAM the second one could be maximum +100/+600. This means that in a 6-card mining rig you will need to either sync all of the cards and use the same lower settings for overclocking the GPUs to ensure they will run stable or to not have the settings synced and find the maximum for each of the cards.
Another interesting thing we have noticed is that while the use of T5x24 kernel for a single card with CUDAminer for best results, for a 6-card mining rig the use of T10x24 might sometimes provide slightly higher hashrate than T5x24, so you should try with both and see what works better in your individual case. Tomorrow we are going to be doing some more testing of the 6-card GTX 750 Ti mining rig that will be focused mostly on the power consumption as this is also a very important thing when talking about crypto currency mining.
The GeForce GTX 750 Ti series of graphics cards based no the new Nvidia Maxwell architecture have really captured the attention of crypto currency miners due to their good performance (hashrate) per watt. Nvidia is advertising these cards to have 60W TDP, however we have discovered that the actual TDP limit for the power target set in the video BIOS of these cards is 38.5W…
This made us dig into the matter a bit more in order to see how much power actually does a GeForce GTX 750 Ti draw from the motherboard (a reference GT 750 with no external PCI-E power connector). So we’ve attached a watt meter to the power line of an external PCI-E extender to see how much power is drawn by the GT 750 Ti card. The results we got were quite surprising, even though we knew that the default power consumption should fit in the 38.5W limit for the power target set in the BIOS. With the stock frequencies for the GPU and the video memory the GeForce GTX 750 Ti has shown to draw just about 28W ot power producing about 250 KHS hashrate for Scrypt mining. After getting the card overclocked to +135 MHz for the GPU and +650 MHz for the video memory the power consumption has risen a bit to about 34W average with a hashrate of about 300 KHS for Scrypt crypto mining.
So if you were calculating the power usage of GTX 750 Ti as 60W in order to see the ratio of hashrate per Watt of power, then you should rethink how you calculate it now. Note that this is the actual power that goes from the PSU to the video card, the real power consumption with a 80 Plus certified power supply that provides 90% efficiency for example would rise with 10% to about 30W (stock) and 37W (overclocked) respectively as the actual power drawn by the card from the wall socket.
The Geforce GTX 750 Ti video cards based on the new Maxwell architecture from Nvidia have generated quite a lot of interest among the users mining crypto currencies thanks to their very good hashrate per watt of used power. And after we have tried a reference GTX 750 Ti board that does perform pretty well and overclocks decently to provide some extra hashrate we are now moving to trying out different non-reference design video cards based on the GTX 750 Ti. Out goal is to find the best choice for overclocking and gaining the maximum possible performance for use the GPU for mining crypto currencies. So we took a Gigabyte GTX 750 Ti (N75TOC-2GI) video card for a spin to see what we can get out of that board…
The default Scrypt mining performance with CUDAminer was about 273 KHS, or slightly more than what we got with the reference card at stock frequencies of about 265 KHS. The two advantages of the Gigabyte board were the presence of an external PCI-E power connector and the much better cooling solution compared to the stock cooler. However we have found out that the TDP limit of the Gigabyte was still set at 38.5W in the video BIOS, though with the Power Target limit removal method you can get much higher limit set and avoid the Power Target functionality limiting your performance.
Overclocking the Gigabyte GTX 750 Ti card to +135 MHz for the GPU and +700 MHz for the video memory brought the Scrypt mining performance to about 303 KHS (the maximum stable clocks for mining), however we were hitting the TDP limit. So we have increased the TDP limit to 65.5W by modifying the video BIOS and flashing the modified version on the Gigabyte board and the result we got with the same overclocked frequencies was up to 322 KHS. Unfortunately the Gigabyte board did not allow for higher GPU frequencies that +135 MHz or to increase the GPU voltage higher than the default value. And while 322 KHS with a silent operation and 42 degrees C of the GPU is not a bad result at all, we are going to be checking out other different GTX 750 Ti boards to see if we are going to be able to get a bit more hashrate than that. So stay tuned for more updates on that…