filmes porno buceta gostosa phim sex www xxnxx com xxxvideos porno Xvideos Com

Search Results

block-erupter-cube-thermal-images

The Block Erupter Cube Bitcoin ASICs are the latest products (though already a few months old) to come out from the company ASICMiner – the same company that made the small USB sticks for mining Bitcoins. These ASIC devices are capable of 32 to 38 GHS (stock and overclocked) and come with a small form factor, but with a relatively high power consumption to be good choice to continue mining for much longer. We got our hands on one of these devices and decided to check it out and report some interesting things we’ve found out about it and that you will probably not find anywhere else. Like for example the thermal images of the miner in action that you can see above that give interesting insight into the operation of the miner. You can see that inside of the device can get pretty hot, while the outside aluminum case remains pretty cool, so the cooling is apparently quite effective in moving air through the chips to keep them operating problem free even when overclocked, even though the chips temperature can go as high as 80 degrees Celsius. Another interesting finding is that the safety fuse on the back of the device can get pretty hot, so e careful with the fuse while the device is working.

block-erupter-cube-power-consumption

The inside of the Block Erupter Cube Bitcoin ASIC consists of a main control board and six modules with chips, each of the boards with chips has 16 chips and the total number of chips inside the device is 96. These are the same chips that are found on the Block Erupter USB devices, so they are not very power efficient nowadays as compared to other alternative solutions available. As you can see the idle power consumption of the ASICMiner Block Erupter Cube is 130W and having the device overclocked to run at 38 GHS the power consumption can go up to about 350W (measured at the power outlet). The high power consumption is with the relatively low hashrate already is what is making these a bit outdated and in a few more jumps in the Bitcoin difficulty.

block-erupter-cube-web-interface

The Block Erupter Cube devices comes with a built-in web management interface that also allows you to switch between the normal and overclocked operation mode with a click of a button. The web interface lets you enter the pool settings, so the device can operate without the need of a computer, however it only supports getwork and not stratum. And with stratum pools you need to use a stratum proxy in order to be able to connect to a stratum pool and that needs to be installed on a computer. We have managed to get about 37 GHS stable hashrate from the unit we have tested in the overclocked state and it was running stable and reliable for the whole week of testing that we did. And while the Block Erupter Cube ASIC miners do have some specifics, they do look nice and well built and already can be found quite cheap, pretty soon there will no be much point in mining for Bitcoins with them, unless you don’t pay for the electricity used. So do not get very tempted by a too attractive price for a Cube miner and better consider another ASIC alternative for mining Bitcoins that provides higher hashrate and uses less power.

antminer-s1-hashing-chips-sideways

Today we’ve decided to finally do a measurement to see how much power does a Bitmain AntMiner S1 Bitcoin ASIC use both at idle (not mining), at stock 180 GHS and at overclocked 200 GHS mode. We’ve been using Bitmain AntMiner S1 miner for a while now and have already shared our best settings for overclocking AntMiner S1 to 200 GHS as well as some very interesting thermal images that what gets hot and how hot actually gets on the AntMiner S1 board. We are going to be measuring the power consumption (at the power socket) with the help of a very good 80 Plus Gold certified Power Supply (Seasonic SS-400FL) that is able to deliver about 90% efficiency at maximum load. This means that the actual power usage of the ASIC miner is 10% less than what our measuring device shows and the other 10% of power are being lost during the conversion essentially in the form of heat dissipated by the PSU. What you are paying for is the actual power measured by the device we are using for the tests of the power consumption.

antminer-s1-idle-power-psu

The idle power we have measured was 75W (67.5W + 7.5W). This is the power usage that you can expect from the device as soon as you power up the AntMiner S1, it takes some time to start up and to connect to the Internet in order to get work from the pool and the power usage during that time is about 75W. Also should your ASIC miner loose connection to the Internet or the pool it is configured to mine at gets down and there is no backup or the other pools are also not available the device will consume 75W of power doing essentially nothing.

antminer-s1-power-usage-under-load

What you will be more interested in though is the power usage of the Bitmain AntMiner S1 ASIC when it is working and mining for Bitcoions. At the default frequency of 375 MHz of the Bitmain chips used in this device and a hashrate of about 180 GHs you can expect a power consumption of about 407W (366.3W + 40.7W). And if you overclock the device to 393.75 MHz as per our guide here you are going to be getting 20 GHS more hashrate at the cost of a small increase in power usage. In 200 GHS overclocked operating mode Bitmain AntMiner S1 ASIC will use about 422W (379.8W + 42.2W). So if you haven’t overclocked your Antiner S1 yet, then you should and our overclocking guide will ensure you get low HW error rate, lower power consumption and stable 200 GHS of hashing performance.

antminer-u1-idle-power-consumption

If you are using Bitmain AntMiner U1 USB Bitcoin ASIC miners there is something important that you should be well aware of in order to get the maximum performance and ensure optimal stability on the long run for these devices. Obviously we are going to be talking about power consumption and usage of these small ASIC miners that are designed to be powered by USB. The manufacturer has rated them at 2 watt power consumption from the USB port with a hasrate of 1.6 GH/s and tha is leaving you about 0.5W headroom for overclocking before reaching the maximum power that a normal USB 2.0 port can provide you with. But we decided to check if the Bitmain rating is rally true and to see for ourselves what is the actual power consumption of the AntiMiner U1 devices. As you can see on the photo above the power usage of the U1 miner is just 0.086A at 5V or a total of 0.43 watts is what you get with the device connected to a PC, but with no mining software running.

antminer-u1-cool-hot-power-consumption

As soon as you fire up cgminer or another compatible mining software and the AntMiner U1 starts working at 1.6 GH/s the power consumption increases significantly that what you get in idle mode. At first we’ve measured 0.385A current used or about 1.925 watts – a bit below the manufacturer’s rating, however this is the power usage while the device is still cool. Just a few minutes later since everything gets hotter (thermal images) after the AntMiner U1 starts operating and the power usage increases along with the temperature of the chips. In just about 10 minutes after starting to mine with the device the current usage increases to 0.405A or a total of 2.025W of power, something that does not seem that much higher at first, but as you start to overclock the device you will notice that the gap between a well cooled AntMiner U1 and a very hot miner increases. The problem is that the higher power consumption leads to more heat and can also result in less performance when overclocking.

Here are the results we’ve got as a power consumption of the AntMiner U1 device connected on a USB 2.0 port. Have in mind that USB 2.0 ports have a standard limit on maximum current they can provide to a connected device of 0.5A or 2.5W in total and this can lead to lower performance you can get when overclocking as you might be hitting the interface power limit and not the device’s:

1.6 GH/s – 0.405A
1.8 GH/s – 0.456A
2.0 GH/s – 0.505A
2.2 GH/s – ~~~~~~

We have moved the AntMiner U1 to a USB port to contnue with our overclocking experiments. Have in mind that USB 3.0 ports have an increased limit of the current they can supply to a device of 0.9A at 5V or 4.5W of power, so we could continue to overclock the USB ASIC further:

2.2 GH/s – 0.568A
2.4 GH/s – 0.633A
2.6 GH/s – 0.701A
2.8 GH/s – ~~~~~~

As you can see from the results above hitting 2.2 GH/s on a USB 2.0 port was not possible as we were hitting the limit of the power the interface can provide already at 2 GH/s. Moving to USB 3.0 we could squeeze up to 2.6 GH/s by increasing the operating frequency of the device and having more power available to use from the USB port. Have in mind that overclocking the device requires an adequate cooling to be provided, so you need to be prepared for that before starting to go past the “stock” 1.6 GH/s hashrate. As you can see from our results the maximum we could get was below the maximum power the USB 3.0 interface can provide, the reason for that is that for higher performance you would also have to increase the voltage that the processor of the device operates at (default 0.8V) in order for it to continue working fine at a higher frequency. This can be done by replacing two resistors on the device and the procedure is described in the AntMiner U1 manual. Have in mind though that increasing the voltage can damage the device, so do have in mind should you decide to go for a hardware modification for even higher performance. Increasing the voltage will also seriously increase the power consumption and will require even better cooling in order not to overheat the miner!

To download the Bitmain AntMiner U1 manual for additional details about overclocking…


top