filmes porno buceta gostosa phim sex www xxnxx com xxxvideos porno Xvideos Com

Search Results

gawminers-falcon-heatsinks

We have been testing the 27 MHS GAWMiners Falcon Scrypt ASIC Miner, the unbranded version, which is essentially the same as the first batch of ZeusMiner Thunder X3. The later batches have been branded with red GAWMiners cases and have some fixes and improvements from the initial design, addressing most of the small details that needed fixing from the first batch. Things like optimized the case and cooling, providing space for integrated power supply and so on are now available in the new design, so we are not going to be talking much about the small flaws in the first batch as they have apparently been resolved in the new and improved batches.

zenos-cloud-based-control-rpi-based-zenminer

GAW ships their Falcon Scrypt ASIC miners bundled with a ZenController by ZenMiner, essentially a Raspberry Pi with an image designed to provide support for the miner and offer cloud-based control of the device directly through a web site. This makes it easier to monitor and control your miner remotely without having to have direct access to the IP of the miner, be on the same network, or use remote connections etc. A convenient way to get started without having to rely on a PC to connect and control the miner, though the Falcon does have a USB port and you can use it with a direct connection to a computer as well. If you are not happy with the ZenOS there is also the option to use a different RPi image with support for the Zeus ASIC chips, there are already a few alternatives available.

gawminers-falcon-fans

The cooling of the Falcon miner is done with two 120mm fans (HFD12038M12BL), the larger type that are 38mm and not 25mm and these are quite powerful and not so silent. But that is to be expected considering the power consumption of the miner, and is something that pretty much all big ASIC miners that provide a lot of hashpower have in common. Unfortunately we could not find details about the specifications of the fans used, but in general it is not a good idea to try to replace these fans with ones that are more silent as that may lead to not so good cooling efficiency and the device overheating. The cooling of the miner is designed in a way that the fans are pulling the air from inside the case and the airflow goes through the large heatsinks, an effective solution from our tests, though the chips still do get quite hot.

gawminers-falcon-noise-level

Here is a look at the noise level of the miner running, measured at 1 meter distance from the device – almost 68 dBA. Not very silent, but we have seen other big miners that have been even noisier than that. What is clear however is that you will not be willing to put this miner in your living room or bedroom for 24/7 mining as the noise level is not suitable for that, you would want to use the miner in a room where the noise is not an issue and the air circulation is good.

gawminers-falcon-power-consumption

Looking at the specifications of the Falcon Scrypt ASIC miner you can see that the power consumption on GAW’s website is 1040W, so apparently a good quality 1000W power supply is recommended to be used with the device. We did measure the power usage of our unit and you can see the results above, but generally speaking a 1000W 80 Plus rated ATX PSU is a good idea to be used. Our test has shown that the actual power usage of the miner is about 916W. The fact that we are using a more powerful 80 Plus Platinum power supply gives us very high efficiency of over 94% at this serious load, so the total power consumed at the wall is roughly 970-975W.

gawminers-falcon-chips-board

Inside the Falcon miner you can find 4 boards with 32 Zeus Scrypt ASIC chips on each. These are attached to large aluminum heatsinks, though the contact point is not the top of the chips, but instead the back of the PCB. This is the easier approach that many ASIC miners use, especially if you have boards with a lot of smaller chips on them, while if you have fewer larger chips they usually have a heatsink on top of the chip. This cooling design does work well, though often with the back contact point the operating temperature of the chips is higher, but apparently no problem for the 55nm Zeus chips.

gawminers-falcon-thermal-image-1

We did take some images with a thermal camera of the Falcon miner in order to have a better idea on the cooling efficiency of the device. On the outside the Falcon is pretty cool with the hottest areas barely getting up to about 42 degrees Celsius, so the cooling method used is doing very well.

gawminers-falcon-thermal-image-2

We’ve opened the case of the miner to take some thermal images of the inside, and as you can see on the left image, the four big aluminum heatsinks remain very cool at about 30-35 degrees Celsius while the fans are pulling a lot of air though them. Looking at the boards with the ASIC chips they do seem a bit hotter as to be expected, the chips are pretty hot as the design of the miner uses the back of the PCB to transfer the heat to the heatsinks as we’ve already mentioned. Temperatures of about 60-70 degrees Celsius are apparently something that is not a problem for them, though you should be careful not to get the temperatures much higher like for example leaving the miner to work with an open case for some time. The power modules of the boards do seem cooler than the ASIC chips, though they do get a bit hot as well.

falcon-24-hour-hashrate-ltcrabbit

Time to talk a bit about the performance you can get from the 27 MHS Falcon Scrypt ASIC. These miners are rated at 27 MHS or more from GAWMiners and they do manage to deliver even slightly higher average performance when you run them at the recommended operating frequency of 328 MHz. The minimum average hashrate we got at the LTC Rabbit mining pool for a period of 24 hours was 25674 KHS and the maximum was 29332 KHS with an average across the whole day of 27882 KHS. Trying out the Scrypt ASIC miner at the ScryptGuild mining multipool where you mine altcoins and get payments directly in BTC has shown us very similar performance – the average hashrate poolside was about 27738 KHS.

falcon-cgminer-performance-results

Looking at the locally reported hashrate when running the cgminer 3.1.1 with ZeusMiner support also shows an average performance of 27.5 MHS as well, looking at the reported WU number that is recommended to be used for judging the actual local hashrate.

So we can conclude that the 27 MHS GAWMiners Falcon Scrypt ASIC miner is really delivering what is being promised and the power rating, although a bit high, is also true as claimed (actual power usage is a bit lower with a good quality PSU). The unbranded Falcon miner from GAW did have some small design flaws that we have noticed, but we’ve seen pretty much all of them being addressed in the newer design that the branded Falcons (with red cases) use. What still seems to be missing though are the rubber feet on the bottom of the case, but you can easily add these yourself, so not much of a problem anyway. With the current price of $1929.95 USD for the latest batch the Falcon does look quite attractive with the performance it offers, though do not forget that you will also need a 1 KW ATX power supply as the miner does not come with a built-in one, so that is some extra cost if you don not have the PSU already. The Falcon using the Zeus 55nm chips at the current prices is an attractive choice as the main competition, currently also shipping hardware, that uses 28nm Innosilicon A2 chips with lower power consumption is about twice as expensive in terms of price for the same hashrate.

kncminer-titan-300-mhs-scrypt-asic

KnCMiner has revealed some more additional details about the chips that are going to be used in their upcoming Scrypt ASIC miners, the now already expected to provide a hashrate of 300 MHS Titan. It seems that each KnC Titan will will have four Scrypt ASIC chips in order to make sure they’ll output the guaranteed minimum performance of 300 MHS. Each chip will have 2284 cores that will be able to run 18272 threads simultaneously and will have 300MB of onboard memory. And since we are going to have 4 chips in each miner, this means that each Titan will come with 9136 cores running 73088 threads in total and resulting 300 MHS of Scrypt hashrate.

KnC says they were able to squeeze all of that in a 55 mm x 55 mm package while simultaneously extracting over 300 Watts worth of thermal energy, so it will be interesting to see how will they be able to cool these units. This however means that the total power consumption for a 4 chip Titan could go up to 1200W. According to KnCMiner the final tape out of the chips should happen within the next few weeks, or with other words the miners are not going to be ready to ship in Q2 and early Q3 is probably way too optimistic… so maybe something like August or September seems like a reasonable expectations. The price of the 300 MHS KnCMiner Titan Scrypt ASIC miner is still $9995 USD without VAT.

With all that said we are already seeing Scrypt-based ASIC miners using the Innosilicon’s A2 28nm chips to be already on sale and apparently shipping. And while these are more expensive and go only up to about 80-90 MHS, they can be further scaled up with more modules, the problem that remains however is that they come pretty expensive, though you can get them without having to wait them on pre-order. So it will be very interesting to see how will things progress on the Scrypt ASIC market in the next few months. Zeus is also expected to start shipping their first batch of 55 nm Scrypt ASIC miners in just 5 more days, so these should be able to fill in the gap between the smaller Gridseed’s GC3355-based miners and the Innosilicon A2-based big miners.

zoom-blade-miner-zoomhash

Zoomhash, a USA-based company selling Gridseed ASIC miners has started selling voltage modified Gridseed G-Blade miners though they call them Zoom-Blade. The Blade Miners are available in two versions, a 6.2 MHS (VMOD1) that apparently can run at up to 925 MHz and 170W power usage and a 7.5 MHs (VMOD2) model that can work up to 1050 MHz with 300W power usage. There is no information about actual improvement in the power scheme of the voltmodded devices, only about improved cooling, so in our opinion if you are not very careful in what environment they are going to be placed you might have some trouble with these miners. Overheating and burning up voltage modified G-Blade miners is not that hard to get if you place them in a hotter environment and the cooling is not sufficient enough to handle the extra load.

Out experience doing a voltage mod of the G-Blade has shown that the miners are able to handle some extra voltage and be overclocked a bit with good extra cooling. Pushing them to 1050 MHz however could be more of a problem as the power block of these devices is definitely not designed to handle 150W per PCB, and even with some extra cooling you could still have problems with high temperature and that could easily lead to problems with the hardware. So we advice extra caution should you decide to go for a voltage modified G-Blade miner, or to modify your own miner. Zoomhash has apparently done tests, but if you place the miner at a place with higher ambient temperature you could still have issues with the proper cooling of the device. So be extra careful and monitor the voltage modified miners very closely at least the first 24 hours in order to be sure that they are staying cool and will be able to operate problem free for long time.

For more information about the voltage modified Zoom-Blade miners from Zoomhash…


top